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The phonon dispersion curves of cesium bromide have been observed by inelastic neutron
scattering in the symmetry directions A, =, and A and along the symmetry line T. The mea-

surements were performed at 80 and 300 K using a three-axis crystal spectrometer.

The ob-

servations have been fitted to various versions of the shell model, and the frequency distribu-
tion and the temperature dependence of the Debye temperature have been calculated from the
model which gives the best fit to the experimental frequencies.

I. INTRODUCTION

The lattice dynamics of alkali halides have been
subject to a great deal of theoretical and experi-
mental effort during recent years. Various dynam-
ical models of the microscopic interactions have
been developed!~5 and the agreement with experi-
mental results has been quite good. The most pow-
erful method of studying lattice dynamics is inelas-
tic scattering of thermal neutrons. This technique
has been used to obtain phonon dispersion curves
for most of the alkali halides with NaCl structure, 88
and theoretical models such as the shell model and
the breathing-shell model have been rather success-
ful in describing the experimental data. One of the
aims of the present work was to investigate the ap-
plicability of these models to CsBr which has the
CsCl structure. No inelastic neutron data existed
for an alkali halide with this structure when these
measurements started. However, simultaneously
and independently CsBr was studied by the time-
of-flight technique by Daubert.!? The reported
results for the [100] direction at room temperature
agree well with our measurements.

An interesting property of CsBr is that the an-
harmonic contribution to the heat capacity is large
and negative compared with the alkali halides with
NaCl structure. !® This difference cannot be ex-
plained by simple theories and detailed knowledge
of the dispersion relations and the frequency dis-
tribution is certainly valuable in the future study of
this problem.

In Sec. II we briefly describe the experimental
technique and give the measured frequencies in the
symmetry directions. A short discussion of the
models is given in Sec. III together with the re-
sults of the least-squares fitting to the phonon
frequencies.

The 11-parameter shell model of Woods et al.!
is used in Sec. IV to generate the frequency distri-
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bution and the temperature dependence of the Debye
temperature in the harmonic approximation.

II. EXPERIMENTAL AND RESULTS

The sample was a single crystal of dimensions
2.5%x2.5%X5 cm and a mosaic width of about 1°
full width at half-maximum (FWHM). Such a rel-
atively large mosaic width and the high absorption
of the crystal (20-30 b) make measurements espe -
cially difficult, and special care had to be taken
when choosing the experimental conditions for a
specific run, The phonons observed were well
resolved and in the analysis of the experimental
data we used as a rule two measurements of the
same phonon resonance from different points in
reciprocal space. The experiment was performed
at the R2 reactor at Studsvik using one of the double-
monochromator spectrometers described by Sted-
man ef al.'® To monochromatize the beam we used
exclusively the (220) planes of two copper crystals
and the scattered neutrons were analyzed either by
Cu (220) or Cu (111). The horizontal collimations
before and after the sample were 0.0095 and 0. 02
rad, respectively, and the vertical collimation was
twice as large. Throughout the experiment the
spectrometer was run in the “constant-«” mode of
operation and phonon creation was observed. Op-
timum conditions for focusing®® could only be ob-
tained in a few cases because of the small slope of
the dispersion curves, and the focusing technique
was in most cases used only as a guide to choose
the most favorable beam path and « vector. Inelas-
tic structure factors, calculated from the eigenvec-
tors of the DD* model of Karo, 2! were used to se-
lect appropriate regions in reciprocal space where
good intensity could be expected. Most of the mea-
surements were done at liquid-nitrogen tempera-
ture while less extensive measurements were done
at room temperature. The major part of the pho-
nons were observed with the crystal oriented with
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a [IIO] direction perpendicular to the scattering
plane, but for the transverse phonons in the T di-
rections with polarization in the [110] direction we
used a scattering plane perpendicular to [001].

The dispersion curves have been determined in
the high-symmetry directions A, ¥,and A, and
along the symmetry line T (see Table I). Some se-
lected phonons have also been measured at room
temperature and a special effort has been devoted
to obtain the phonons at the points I', R, M, and X,
as these phonons play an important role in second-
order Raman scattering (see Table II). The phonon
resonances were analyzed by using the method of
Stedman and Weymouth?? and the experimental er-
rors so obtained are generally between 1 and 2%,
but for some of the lowest energy acoustic phonons
the errors are 4-5%. In these cases the relatively
large mosaic width of the crystal caused a slooping
background of elastically scattered neutrons which
had to be subtracted before analyzing the phonon
resonance, and this gave an extra contribution to
the error of the phonon frequency. The relative un-
certainties are generally somewhat larger for CsBr
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than in earlier measurements on alkali halides!®™1¢
using the same spectrometer. This is due to the
combined effect of the high absorption and the rather
broad mosaic width of the specimen.

III. MODELS

The shell model of Woods et al.! and the breath-
ing-shell model (BSM) of Schréder® have been
used to relate the neutron results to microscopic
inter- and intra-ionic interactions in the crystal.
The most generalized versions of these models
contain 29 parameters when second-nearest-neigh-
bor interactions are included.? By doing some
approximations, which seem reasonable from a
physical point of view, this fairly large number of
parameters is reduced to between seven and eleven
for the four different models used here todescribe the
lattice dynamics of CsBr. The adjustable parameters
aredetermined from the measured phonon frequencies
in the high-symmetry directions by a least-squares
fitting procedure. The quality of the fit is given
by the quantity x? defined as

TABLE I. Phonon frequencies in CsBr at 80 K.
Wave
vector
Direction aq/2n Phonon frequencies (10'® rad sec™!)
TA LA TO 10
[100] 0 1.440£0.015
(a) 0.1 0.397+0.006 1.45 +0.03 2,10 +0.03
0.2 0.37 +0.02 0.785+0.010 1.35 x0.02 2.05 +£0.03
0.3 0.555+0.010 1.080%0.015 1.28 x0.01 1.99 20.03
0.4 0.710£0.015 1.29 £0.02 1.25 +0.01 1.88 +0.02
0.5 0.845+0.015 1.44 +0.04 1.21 £0.01 1.83 £0.03
TA LA TO 10
[111] 0.05v3 2.12 +0.03
(A) 0.1V3 0.360+0.015 0.628+0.010 1.440x0.015 2.01 +0.02
0.2V3 0.685+£0.010 1.08 +0.02 1.470£0.015 1.705£0.015
0.3V% 0.910£0.015 1,16 +0.02 1.49 20.02 1.58 £0.02
0.4V3 1.075£0.020 1.10 +0.02 1.520£0.015 1.58 +0.02
0.5V3 1.17 0.03 1.17 +0.03 1.53 £0.02 1.53 £0.02
T,A T,A LA T,0 T,0 LO
[110] 0.05V2 2,12 £0.04
) 0.1V2 0.280+0.015 1.49 £0.01 1.39 £0.01 2.015+0.020
0.2V2 0.61 +0.01 0.537+0.007 0.970+0.015 1.54 +0.02 1.30 +0.02 1.88 £0.01
0.3V2 0.815+0.015 0.715%0.010 1.18 +0.02 1.61 +0.02 1.22 +0.02 1.64 +0.03
0.4v2 0.970+£0.015 0.775x0.015 1.04 +0.02 1.67 £0.02 1.130+0.015 1.66 +0.03
0.5V2 1.01 0.02 0.77 +0.02 1.01 +0.02 1.69 £0.03 1.11 +0.03 1.69 £0.03
s TA LA TO 10
[33¢1 0.125 0.85 £0,02 1.25 £0.02
0.250 0.99 10.02 1.39 +0.03 1.64 +0.03
(T) 0.375 1.10 +0.02
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TABLE II. Phonon frequencies in CsBr at 300 K.
Wave
vector
Direction aq/2t Phonon frequencies (10!? rad sec™)
TA LA TO LO
[100] 0 e 1.40+0.02
(A) 0.3 0.528+0.007 1.13+0.02 1.21+0,02 1.93 +£0.03
0.5 0.785+0.015 1.10+£0.03 1.75+0,02
[111] TA LA TO LO
(A) 0.5V3 1,13+0.02 1,50+0.02
T,A T,A LA T,0 T,0 LO
[110] 0.2V2 0.595+0.010 1.02+0.02 1.46+0.02 1.84+0.03
=) 0.5V 0.74+0.02 0.97+0.02 1.05+0.02 1.62£0.03
§£\ Vie-Vi® -2 shell are given by the matrices R, T, and {, re-
X :N- o\ o ’ spectively, while C specifies the Iong—range Cou-

where N is the number of observations, P the num-
ber of adjustable parameters in the model, v; and
v;. are the observed and calculated frequencies of
the ith phonon, and ¢; its estimated experimental
uncertainty. Another indication of the relevance of
a specific model is the calculated values of the
elastic and dielectric constants, which are not in-
corporated in the fitting,

Models I-III are similar to the shell model of
Cowley et al.?* Using the harmonic, adiabatic, and
electrostatic approximations the equations of mo-
tion can be written

@'m U-(R+ZCDU+(T+ZCYV ,

(O (T+YC Z)U+(§+YCY)W

’

where m, Z, and Y are diagonal matrices repre-
senting the ion masses, the ion charges, and the
shell charges, respectively. The short-range inter-

actions of type core-core, core-shell, and shell-

lomb interactions. U and W are polarization vec-
tors, U specifying “the ionic displacements, and
Y W the dipole moments of the ions. To reduce
the number of adjustable parameters we followed
Cowley ef al.?* by setting R=8=T for all wave
vectors. S is defined throﬁgh_g =S+ K, where
K is a diaéonal matrix whose elem‘ents_—le1 and
Ea are the core-shell coupling constants for the
positive and negative ion, respectively. Phys-
ically this means that all short-range forces act
entirely through the shells. The short-range
interaction is defined by the radial and tangential
force constants A and B which we consider as ad-
justable parameters. The subscripts 1 and 2 refer
to the positive and negative ions, respectively (see
Table III).

The short-range potential between nearest neigh-
bors is assumed to be noncentral and B"' is the
noncentral component of the tangential force con-
stant. The central component B, is eliminated
through the stability condition for the lattice. 2
The remaining parameters are the ionic charge

TABLE III. Parameters for the four shell modes which give the best fit to the experimental results. v is the volume of
the primitive cell.

Model Model

parameters Units I II III v
Ag, e?/2v 8.85 £0.22 8.85 +0.37 8.39 £0.49 8.04 +0.67
Ay e?/2v 0.97 +0.39 0.49 +0.29
By, e?/2v —0.22 +0.08 —0.15 £0.06
Agy e?/2v —0.13 £0.34 0.20 £0.32 0.56 +0.32
By, et/2v 0.32 £0.07 0.12 £0.10 0.15 £0.10
B e*/2v -0.15 £0.08 —0.11 +0.07 -0.29 +0.08 -0.16 +0.11
z e 0.943 £0.016 0.953+0.035 0.849 £0.057 0.85 +0.06
ay 10724 cm? 3.09 0.57 2.37 +0.56 0.51 +0.38 1.19 +0.66
a, 10724 em? 1.76 +0.65 1.91 £0.50 1.72 +0.53 2.10 +0.67
dy e —0.099 £0.028 —0.104 £0.040 —0.080+0.034 0.002x0.04
dy e 0.087£0.022 0.086 +0.018 0.044 +0.040 0.073+0.05
X2 5.85 3.40 2.94 3.31
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TABLE IV. Comparison of some physical quantities

derived from the models and experimental data. The

elastic constants are given in units of 10! dyn/cmz.

Model
I II I v Expt
Cy 3.50 3.44 3.49 3.30 3.345%
3.355"
1.07 1.04 1.30 1.00 0.9667
Cro : : : : 1.002°
C 0.85 0.89 0.89 0.88 0.9517
u : : : : 0.963°
€0 4.28 4.08 2.92 3.57 6.45°
€ 2.05 1.88 1.41 1.64 2.814
3See Ref. 27. °See Ref. 34.
"See Ref. 28. dSee Ref. 35

Ze, and @, d; and a,, d,—the electrical and me-
chanical polarizabilities of the positive and negative
ion, respectively.
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Both types of ions are considered to be polarizable

in all models, as the electronic polarizabilities of
the Cs and Br ions are of the same order of mag-
nitude (3. 14 and 4. 13 A®, according to Tessman
et al.®). Models I-IIIdiffer in respect to the short-
range interaction between next nearest neighbors
(see Table III). Model I, where the short-range
potential extends only to nearest neighbors, gives
a rather poor fit to the experimental frequencies,
especially for the longitudinal acoustic phonons

4

in the A and Z directions. The short-range inter-
actions between next nearest neighbors of the Br
ions are included in model II, which makes the x2
value significantly lower, and the fit is further im-
proved for model III, where the full short-range
interaction between next nearest neighbors is as-
sumed. The elastic constants derived from these
models are in fair agreement with ultraonic mea-
surements of Vallin et al.?” and Reinitz, ?® as can
be seen from Table IV. This consistency between
calculated elastic constants and experimental re-
sults is not improved when the range of the short-
range potential is increased beyond nearest neigh-
bors. This is an indication that the force constants
originating from next-nearest-neighbor interaction
have a comparatively small influence on the elastic
properties.

For all these models d, is negative, indicating
that the electron shell of the Cs ion has a positive
charge, which is physically unreasonable. In PbTe?
and AgCl1% the results were markedly improved by
using a shell model where the approximation R=T
is relaxed and a direct core-shell interaction is
introduced by the two additional parameters S4(12)
and B,(21) defined as Ty,=B,(12)R5 and T,
= BT(Z I)Rm.

Such a model with 13 parameters was also ex-
amined for CsBr, but is in no respect superior to
model III. The parameters f,(12) and 8, (21) are
close to 1, which shows the validity of the assump-
tion that all short-range forces act only between
the shells.
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\:>~’ FIG. 1. Dispersion curves for
CsBr at 80 K. The solid lines are
the best least-squares fit to the re-
sults from model III and the broken
lines show the LO branches according
to model IV (BSM). Error bars are
omitted for experimental points with
uncertainties less than or comparable
to the size of the dots.
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Model IV is the BSM first proposed by Schréder?
who modified the shell model by allowing the shells
of the ions to be radially deformed or to “breath.”
This gives a new degree of freedom per ion repre-
sented by a breathing coordinate and associated
with it a breathing force constant, which together
determine the isotropic force acting on the shell
due to a radial deformation. The total number of
parameters is not increased by introducing the
breathing interactions as the breathing force con-
stants are set equal to the ones related to transla-
tional deformations of the ions, that is, k&, for the
positive and %, for the negative ion. A consequence
of the BSM with central forces is that ¢y, < cgy. *°
This is not the case in CsBr and as in the rigid-
shell model we have to introduce a noncentral force
constant B"' to be able to obtain realistic elastic
constants. Model IV has the same number of ad-
justable parameters as model III but the x? value
is somewhat larger. However, the fit to the LO
phonons is significantly better, as is found in Fig.

1 where the dashed curves indicate the LO branches
of model IV. For the other branches model III
gives in most cases a better fit, but the difference
between the two models is small. The elastic cori-
stants derived from model IV give the best agree-
ment with ultrasonic results and d; has a physically
acceptable value, which is not the case for the other
models.

IV. DERIVED PROPERTIES

A. Frequency Distribution

Even if there is some minor discrepancies be-
tween model IIT and the measured phonon frequencies,
this model is undoubtedly quite capable of generating
an adequate frequency distribution for CsBr. The
method of calculation is based on the approach of
Gilat and Raubenheimer?®! suitably medified to the
shell model. The irreducible part of the Brillouin
zone was divided into small cubes and the phonon
frequencies and their gradients were computed at
the centers of each cube. A first-order Taylor ex-
pansion was then carried out around these points
to generate constant-frequency planes through the
cube which bound a volume with phonon states be-
longing to the same frequency channel. The contri-
bution from each small cube to a specific channel
of the frequency distribution is then proportional
to the volume of the corresponding slice of the
cube. The frequency distribution shown in Fig. 2
is based on 506 mesh points in the irreducible part
of the Brillouin zone and the channel width is 0. 01
x 10" rad sec™. The uncertainties involved in the
method were estimated by doing two independent
calculations with the mesh of small cubes shifted
with respect to each other. The maximum devia-
tion was at the most a few percent, except for the
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low-frequency part. This originates from phonon
states near the origin of the Brillouin zone where
the curvature of the dispersion surfaces is appreci-
able, which makes our method of calculation less
accurate.

B. Debye Temperature

The frequency distribution was used to calculate
the Debye temperatures ®,(7) as a function of
temperature. The result is shown in Fig. 3, to-
gether with results of Sorai!® obtained from heat-
capacity measurements. The two sets of data are
in reasonable agreement if one considers that no
corrections for anharmonic effects have been in-
cluded in our calculation, which explains the devia-
tion at higher temperatures.

At low temperatures ® ,(7) is sensitive to the
low-frequency part of the frequency distribution,
where the relative errors are fairly large owing to
the method of computation. The elastic constants
calculated from model III were used to obtain
©,(0).%% This is indicated in Fig. 3 with a filled
circle.

V. DISCUSSION AND CONCLUSIONS

The least-squares fit to the measured frequencies
for the different versions of the shell model is of
the same quality as in similar calculations for
alkali halides with NaCl structure, !*1%:3% The
best agreement to neutron results was obtained for
models IIT and IV, both containing 11 parameters,
but model IV is slightly to be preferred as in this
case no parameter has unphysical values and the
calculated elastic constants are in better agreement
with ultrasonic results. The calculated low- and
high-frequency dielectric constants are given in
Table IV. The values are consistently lower than
the results from electromagnetic measurements,
and the electrical polarizabilities ¢, and o, are
also less than the values reported by Tessman et

15 | T T B
Cs Br(80°K)

glw)

05 + B

0 1 1
2

1
w (10* rad sec™)

FIG. 2. Frequency distribution for phonons in CsBr

calculated from model III.
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10 1 1 1 1 1
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FIG. 3. Comparison of experimental (see Ref. 18) and
calculated (model III) temperature dependence of the
Debye temperature of cesium bromide.

al.® The observation that the best fit to the neutron
data is obtained by using significantly lower polar-
izabilities for the ions than the values deduced from
dielectric measurements indicates that the shell
models overestimate the polarization effects on the
phonon frequencies for CsBr. However, it must

be stressed that this conclusion is based on a least-
squares fitting procedure which gives rather large
uncertainties for the parameters (Table III). Due
to this fact it is not advisable to make a more phys-
ical interpretation of the variation of the parameters
for the different models, even if some of these pa-
rameters seem to be rather model dependent.

The low- and high-frequency dielectric constants
€ and ¢, are related by the Lyddane-Sachs-Teller
(LST) relation® to the frequencies of the transverse
and longitudinal modes for ¢=0, wpy, and w;,,
respectively, according to the formula (e,/€.)" 2
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=wro/wro. This relation cannot be tested rigor-
ously for CsBr in this experiment as there are no
neutron data for w;, due to the well-known difficul-
ties to measure this particular phonon. ® A good
estimation can, however, be obtained by using
model IV (BSM) which gives the best fit to the LO
branches. The result from this model for w;, at
80 K is 2. 14x 10" rad sec™, which is in accordance
with reflectance measurements on thin films by
Lowndes, * who obtained 2. 15x10* rad sec™. The
result from neutron measurements for w;, at 80
K is 1. 440, which makes the ratio w; o /wy, =1. 486,
Using 2. 81 for €. % and 6. 45 for ¢,, *" we obtain
(eo/€-)"%=1.515. The 2% difference is well within
the estimated errors and the neutron data strongly
support the validity of the LST relation in CsBr.
Lowndes® has determined wgo at 290 and 2 K
by infrared transmission measurements. His
values 1.39x10" and 1.48x10" rad sec™ are in
good agreement with the neutron results 1.40x 10"
at 300 and 1.44x10" rad sec™ at 80 K.
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Elastic Constants of the CsCl Structure Containing Impurity Ions
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The T-matrix method has been used in determining the effect of point defects on the elas-
tic properties of the crystals having a CsCl structure. The expressions for the bulk elastic
constants have been obtained in terms of the local changes in the central- and the noncentral-
force constants. A numerical estimate has been made in the case of CslI containing some
impurity ions such as Rb*, K*, T1*, and In*. The necessary force-constant changes have
been taken from the results of the infrared lattice-absorption experiments. The calculated
elastic constants have been tentatively compared with the experimentally measured elastic
constants of a dilute alloy Mo-Re which has a bcc structure. Agreement is seen in the rela-

tive magnitudes of change in the elastic constants.

1. INTRODUCTION

The elastic properties of a crystal containing a
finite concentration of defects are significantly
altered. The local strains around the defect are
seen to be different from that of the host lattice.

A knowledge of these strains, induced locally by
the applied stress, is required to interpret a num-
ber of experimental measurements of the effects

of elastic strains!~* and electric fields® on the prop-
erties of crystals containing point defects. The
bulk elastic constants are also modified.®*” The T-
matrix method includes in a natural way the pecu-
larities of the discrete structureof the lattice. The
method was discussed with a statistical approach
by Elliott et al.,® who showed that the results ob-
tained were similar to those of the dynamical ap-
proach.’ Benedek and Nardelli'® have applied the
T-matrix method to discuss the influence of defects
in alkali halides; however, they did not make any
numerical estimate for the modified bulk elastic
constants.

In the present paper, we use the T-matrix method
for determining the effect of substantial point de-
fects on the elastic properties of the crystals of
CsCl structure. Expressions for the bulk elastic
constants have been obtained in terms of local
change of central- and noncentral-force constants.
Numerical estimates have been made in the case of
CsI containing some impurity ions such as Rb*, K*,
T1', and In*. They are compared with the available
experimental measurements of elastic constants of
a bce dilute Mo-Re alloy. The changes in the cen-

tral- and noncentral-force constants deduced from
the infrared lattice-absorption data! !2 have been
used.

II. THEORY

Let us consider a solid containing a low fraction-
al concentration p of similar substitutional point
defects. In order to understand the lattice dynamics
of the imperfect solid, one must evaluate the per-
turbed phonon propagator or Green’s function which
is defined by

G(2)=[Lo+ Py.c. (0?) - 21 ], W

where L, is the mass-reduced dynamical matrix of
the perfect host lattice and g,.c.(wz) is the perturba-
tion matrix caused by a specific configuration of
defects. For the explicit forms of these matrices,
we refer to an earlier paper.!® z=w?+2iwt* is the
complex squared frequency in the limit as ¢*—- 0*.
The propagator defined by Eq. (1) has been written
for a single specific configuration of defects. If

a statistical average over all the possible configura-
tions of defects is taken, the averaged perturbed
Green’s function is given by

(G(2))=G%2) - G%(2) = (G(2) ), (2)

where the self-energy Z is periodic like the perfect
phonon propagator G,. Because of the configuration
average, we can, therefore, go to the normal-mode
representation and write

(GE®))=[wf += & s)-2]?, ®)

where wé's denotes the squared frequency of the



